US 2006/0161516 Al

shared object is the version that includes the most recent
revisions that are synchronized with the shared object and
made available to other authorized users.

[0042] For example, a user may revise a content container
of a shared object that is identified as revision R1 by adding
outline element node 370 to outline node 344 (as shown in
revision R3). Revision R3 is stored in the shared object.
Revision R3 is also assigned a time stamp and a GUID (e.g.,
GUID-3) to uniquely identify the revised content container.
Revision R3 is an extension of revision R1. Thus, revision
R1 is the latest version of the shared object that the user was
aware of (e.g., the locally stored version). The shared object
is inspected to determine whether the latest version of the
shared object is still revision R1. In one embodiment, the
latest version of the shared object may be determined by
comparing time stamps and GUIDs of different content
containers. If the latest version of the shared object is
associated with a more recent time stamp than revision R1
then another user (e.g., the user who created revision R2) has
subsequently modified the same content container.

[0043] If another user has modified the same content
container since revision R1 was synchronized with the
shared object, any revisions that are an extension of revision
R1 (e.g., revision R3) may not be synchronized with the
shared object until any subsequent revisions are synchro-
nized with the shared object and any conflicting revisions
are resolved and merged. For example, revision R2 is
synchronized with the shared object after revision R1. Thus,
the latest version of the shared object includes revision R2.
Before revision R3 is synchronized with the shared object,
revision R3 is compared to revision R2 to determine if any
revisions conflict. The comparison is necessary because
revision R3 is an extension of revision R1 which is no longer
associated with the latest version of the shared object.
Revision R3 is determined to not conflict with revision R2
because outline element node 370 can be added to outline
node 344 without disrupting revision R2.

[0044] In one embodiment, the shared object is revised by
moving a content container from one location to another
within the shared object. For example, table node 340 may
be moved from page node 330 to page node 335. A deter-
mination is made that table node 340 has been moved but the
new location cannot be determined. A proxy node is created
at the original location of table node 340. The proxy node is
implemented at the new location of table node 340 when the
new location of table node 340 is determined. If table node
340 is deleted before the new location is determined, the
proxy node is discarded.

[0045] Different users may simultaneously edit the shared
object. Usually, the users are revising different content
containers of the shared object. Thus, each user’s revisions
may be synchronized with the shared object without further
processing. A conflict may occur when two users edit the
same content container of the shared object (e.g., the same
table values, the same sentence). A conflict between different
user revisions may result asynchronously. For example, a
user may revise a locally cached version of the shared object
when not connected to a server. The revisions are synchro-
nized with the shared object when the user reconnects to the
server. However, the revisions may conflict with other
revisions that have already been synchronized with the
shared object.

Jul. 20, 2006

[0046] For example, revision R4 is an extension of revi-
sion R3. Revision R4 deletes outline element node 350 from
outline node 344. The latest version of the shared object is
determined to include revision R2. A comparison between
revision R2 and revision R4 identifies a conflict because
outline element node 350 is present in revision R2 but has
been deleted in revision R4.

[0047] A three-way merge is performed between a master
version of a content container and two divergent versions of
the content container to resolve the conflicts. For example,
content container R0 (i.e., the master version), revision R2,
and revision R4 are merged to establish the current version
of the shared object. The master version of a content
container may be the version that was last synchronized with
the shared object on the server. The master version includes
non-conflicting revisions.

[0048] The conflicting content containers are reconciled
and merged into the shared object by following a set of rules
established by a merge algorithm. The merge algorithm
determines which revisions are synchronized with the shared
object. For example, different users may be ranked accord-
ing to priority such that one user’s revisions take precedence
over all other users (i.e., primary edits). When a lower
priority user attempts to revise a content container of the
shared object that has already been revised by a higher
priority user, the user is informed that the revisions (i.e.,
secondary edits) will not be synchronized the shared object.
Thus, the primary edits are displayed on a master page of the
shared object and any secondary edits are flagged as not
being synchronized with the shared object.

[0049] In another example, revisions made to a shared
object on a server have priority over revisions made locally
on a client. The server copy of the shared object is deemed
the master version because many different users have poten-
tially accessed and revised the shared object on the server.
Only one user has accessed and revised a locally stored
version. Revised content containers that are not synchro-
nized with the shared object (e.g., secondary edits) are
identified as conflicting. The conflicting content containers
are preserved by being stored on conflict pages associated
with the corresponding master page of the shared object.

[0050] FIG. 4 illustrates a master page of a shared object
and an associated conflict page. Master page 400 includes
non-conflicting revisions such as content containers 410,
420. Any unmerged conflicting revisions are identified on
master page 400 by a conflict indicator. In one embodiment,
the conflict indicator is drop down menu 430. The first entry
of drop down menu 430 may be the most recent conflicts
generated by the user. The entry of drop down menu 430
may include the user’s name and a corresponding time
stamp. Another entry in drop down menu 430 may include
other conflict pages that the user generated but did not
reconcile. Other entries in drop down menu 430 may cor-
respond to conflict pages generated by other users. Selecting
an entry from drop down menu 430 displays the correspond-
ing conflict page with the conflicting revisions highlighted to
draw the user’s attention to the revisions that were not
merged in the master version of the shared object. Thus, the
user may either reconcile and merge the conflicts with
master page 400 or decide that the conflicts are irrelevant.

[0051] In another embodiment, the conflict indicator is a
tab. The master page may be associated with tab 440.



